
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 124

Volume 1, Issue 4, December 2010

A Step To Embedded Database
 A Techno Change

Manik Sharma

Assistant Professor & Head, PG Deptt. of computer Science and Applications

Sewa Devi SD College Tarn Taran

Manik_sharma25@yahoo.com

Abstract— Recent advances in device tools and

connectivity have tiled the way for next generation

applications that are data-driven, where data can reside

anywhere, can be accessed at any time, from any

client. Embedded systems are computers

(microprocessors) that are enclosed (embedded) in

customized hardware. An embedded database system

is a database management system which is closely

coupled with application software that requires access

to stored statistics or data, such that the database

system is ―hidden‖ from the application’s end-user and

requires little or no ongoing maintenance. More than

20 years one could argue that since the beginning of

software, embedded databases have been in existence.

The operations of the embedded database are invoked

by the application. The embedded database is

embedded within an application either as in-line code

or linked libraries unlike the traditional general

purpose enterprise relational databases such as Oracle,

DB2, and SQL Server etc which normally run as the

separate applications that are independent of the

system application. The key operational advantage of

the embedded database is that using the embedded

database the users and administrators are not burdened

with time-consuming installations or maintenance as

the database is packaged with the application and is

generally self maintaining. The embedded databases

can be relational, hierarchical, network model, XML

based, object oriented etc. The embedded DBMS are

typically used in the mobile phones, PDA’s, set-top

boxes, automotives etc.

Keywords- Embedded Database, DBMS, Software,

Oracle, mobile phones

1. INTRODUCTION

As we know that the database is defined as
collection of interrelated data. Initially small databases
were first developed or funded by the U.S. government
for agency or professional use. In the 1960s, some
databases became commercially available, but their use
was funneled through a few so-called research centers
that collected information inquiries and handled them
in batches

[1]
. Recent advances in device technology

and connectivity have paved the way for next
generation applications that are data-driven, where data
can reside anywhere, can be accessed at any time, from
any client. Embedded systems are computers
(microprocessors) that are enclosed (embedded) in
customized hardware. Examples of embedded systems
are portable medical equipment, cellular phones, or
consumer electronics items. An embedded database
system is a database management system which is
closely tied with application software that requires
access to stored data, such that the database system is
―hidden‖ from the application’s end-user and requires
little or no ongoing maintenance

 [2]
. More than 20 years

one could argue that since the beginning of software,
embedded databases have been in existence.

In other words we can say that embedded database
is embedded in some another software applications.
The operations of the embedded database are invoked
by the application. The embedded database is
embedded within an application either as in-line code
or linked libraries unlike the traditional general purpose
enterprise relational databases such as Oracle, DB2,
and SQL Server etc which normally run as the separate

FLAT FILES

(1960-1980)

OBJECT

RELATIONAL

(1990-Present)

DISTRIBUTED

DATABASE

(2000 Onwards)

HIERARCHICAL

DATABASE

(1970-1990)

NETWORK

DATABASE

(1970-1990)

 RELATIONAL

DATABASE

(1972-Present)

OBJECT

ORIENTED

(1990-Present)

DATABASE

EVOULTION

mailto:Manik_sharma25@yahoo.com

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 125

Volume 1, Issue 4, December 2010

applications that are independent of the system
application.

 The key operational advantage of the
embedded database is that using the embedded
database the users and administrators are not burdened
with time-consuming installations or maintenance as
the database is packaged with the application and is
generally self maintaining. The embedded databases
can be relational, hierarchical, network model, XML
based, object oriented etc.

 The embedded DBMS are typically used in the
mobile phones, PDA’s, set-top boxes, automotives etc.

Worth of Embedded Database: Modern embedded
devices are now responsible for storing more data than
ever before. Some devices get an edge on the
competition by synchronizing data without interrupting
normal use. Important data must not be lost to
corruption caused by a power failure. For these
devices, performance and reliability are critical.

2. EMBEDDED DBMS CHARACTERISTICS

The data access and management requirements of the

applications described above are significantly different

from that of traditional server DBMS. These new

applications must be able to run on multiple tiers

ranging from devices to servers to web and would

benefit from various existing database mechanisms.

However, these database mechanisms (like query,

indexing, persistence) must be unlocked from the

traditional monolithic DBMS and made available as

embeddable components (e.g. DLLs) that can be

embedded within applications, thereby, enabling them

to meet the requirements described above. Such

Mobile and Embedded DBMS have the following

characteristics:

1. Embeddable in applications – Mobile and

Embedded DBMS form an integral part of the

application or the application infrastructure, often

requiring no administration. Database functionality is

delivered as part of the application (or app

infrastructure). While the database must be

embeddable as a DLL in applications, it must also be

possible to deploy it as a stand-alone DBMS with

support for multiple transactions and applications.

2. Small footprint – For many applications, especially

those that are downloadable, it is important to

minimize DBMS footprint. Since the database system

is part of the application, the size of the DBMS affects

the overall application footprint. In addition to the

small footprint, it is also desirable to have short code

paths for efficient application execution. Most of these

applications do not require the full functionality of

commercial DBMSs; they require simple query and

execute in constrained environments.

3. Run on mobile devices – The DBMS that run on

mobile devices tend to be specialized versions of

mobile and embedded DBMS. In addition to handling

the memory, disk and processor limitations of these

devices, the DBMS must also run on specialized

operating systems. The DBMS must be able to store

and forward data to the back-end databases as

synchronization with backend systems is critical for

them.

4. Componentized DBMS – Often, to support the

small footprint requirement, it is important to include

only the functionality that is required by the

applications. For example, many simple applications

just require ISAM like record-oriented access. For

these applications, there is no need to include the

query processor, thereby increasing the footprint.

Similarly, many mobile and mid-tier applications

require only a small set of relational operators while

others require XML access and not relational access.

So, it should be possible to pick and choose the

desired components.

5. Automatic DBMS – The embedded DBMS is

invisible to the application user. There can be no DBA

to manage the database and operations like backups,

recovery, indexing, tuning etc. cannot be initiated by a

DBA. If the database crashes, the recovery must start

instantaneously. The database must be self managed or

managed by the application. Also, embedded DBMS

must auto install with the application it should not be

installed explicitly (user action) or independently.

Similarly when the application is shutdown, the

DBMS must transparently shutdown.

6. In-Memory DBMS – These are specialized DBMS

serving applications that require high performance on

data that is small enough to be contained in main

memory. In-memory DBMS require specialized query

processing and indexing techniques that are optimized

for main memory usage. Such DBMS also can support

data that may never get persisted.

7. Codeless database – Portable database should be

free from any threat. The executable code can become

the reason for malfunctioning or destruction of data in

the form virus. By eliminating any code storage in the

database, we can make our database consistent and

safe
 [4]

.

8. Portable databases – There are many applications

which require very simple deployment – installing the

application should install the database associated with

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 126

Volume 1, Issue 4, December 2010

it. This requires the database to be highly portable.

Typically, single file databases (e.g. like Microsoft

Access databases) are ideally suited for this purpose.

Again, there should be no need to install the DBMS

separately – installing the application installs the

DBMS and then copying the database file completes

the application migration. With the help of portable

database
[5]

 application we can reduce the anomalies in

database migration.

9. Synchronize with back-end data sources – In the

case of mobile and cached scenarios, it must be

possible to synchronize the data with the back-end

data sources. In typical mid-tier (application server)

caches, the data is fetched from the back-end

databases into the cache, operated on, and

synchronized with the back-end database.

10. Remote management – While mobile and

embedded DBMS must be self managed, it is

important to allow them to be managed remotely also,

especially those on mobile devices. In enterprises (e.g.

FedEX, UPS), mobile devices must be configured and

managed in a manner compliant with the company

3. Embedded software in India

Typically software for embedded systems need to have

a very small footprint (i.e. be able to run in a small

amount of memory) and often have to work in real-

time. Companies here in India offer specialized

operating systems and languages, which make this

possible. These companies ensure the designing,

developing, and testing of software for embedded

systems and components meet specific customer

requirements. They use diverse, real-time operating

systems, devices and platforms and associated

embedded tools and technologies. The various

Embedded Software domains
[5]

 in India are:

EMBEDDED SYSTEM IN INDIA
Aerospace and

Defense

Automotive

Consumer

Electronics

Industrial

Measurement and

Control
Servers and Storage

Networking

Process Control

Systems

Figure2: Embedded System in India

The various embedded database system

in
commercial market are ElevateDB, Interbase, Oracle
Berkley DB, SolidDB etc.

4. Conclusion

Embedded databases differ from typical databases

such as DB2, Oracle, and SQL Server in that it is

entirely embedded into the application or hardware

device in such a way that the user has very little

knowledge, if any, of its existence. Users and

administrators are now free from the huge tension of

installing and maintaining the database because the

database is closely bundled with the application and

should be self maintaining. Embedded databases are

potable in nature and meant to run on many different

platforms with various programming interfaces. It also

help in reducing engineering and quality assurance

cost, eliminate some support cost in setup and

implementation. The nature of embedding databases’

instruction sets being linked specifically within and for

a specific application gives them a small footprint.

Because embedded database reduces the instruction set

hence it allows them to achieve performance that is

hard to beat. The above discussion end with that future

is of embedded database. Besides, embedded industry

will flourish in the area of automotive, industrial,

consumer electronics in coming year.

REFERENCES

[1] Microsoft Encarta Library 2005.

[2] Graves, Steve. "COTS Databases For Embedded

Systems", Embedded Computing Design magazine,

January, 2007. Retrieved on August 13, 2008.

[4] TinyDB: http://telegraph.cs.berkeley.edu/tinydb/.

[5] http://msdn.microsoft.com/en-

us/library/ff647179.aspx (online)

[6] Ramachandra Budihal, Emerging trends in

embedded systems and applications (online)

http://www.eetimes.com/discussion/other/4204667/Em

erging-trends-in-embedded-systems-and-applications

